2023-2024学年优秀博士研究生资助推荐汇总表

学院	排序		1							获	情况		2023 2025	论文	F犯分件士/ 課	יל ועי	<u>. ــــــــــــــــــــــــــــــــــــ</u>	火刃	7731	<u> </u>	レル 著作)					国际交	流情况				-	利情况					
		学号	学制	姓名	导师 姓名	录取 类别	申请 延十	清 送 以	* 个人 排名	、 获奖 获奖 3 等级 时间	颁奖单	Ż 论文名称	作者排名	发表刊物名称	发表时间	收录 类别	影响 因子	著名	作 作者 称 排名	出社	版 出》 名 时 (版 写作	国际 学术 会议 名称	示 会 地	议 点 名	交 文 称	议 参	会专	利名称	专利申请个 人排名	转化 后成 果称	专利授权时 间	专利号	其他情 况说明			
													Suspended water droplet confined lase shock processing at elevated temperatures	er 第一	International Journal of Machine Tools and Manufacture	2022	SCI	10.33	3											明液滴强化 合增材制造 方法	第二发明人 (导师为第 一发明人)		2022. 04. 29	CN 113333775 B			
工业科				刘健	胡耀武	全日学型博士									Ultrahigh strain rate-activated superplastic forming of aluminum and gold nanometals	i 第一	Materials & Design	2022	SCI	9.417	,										增	于悬浮液滴 强的激光冲 方法及其应 用	第二发明人 (导师为第 一发明人)		2022. 03. 04	CN 113322374 B	
工业科 学研究 院	1	20201065 20005'	3年				半红	年					Laser Shock-Induced Nano-Twist of Transition Metal Dichalcogenides	第一	ACS Applied Materials & Interfaces	2022	SCI	10.38	3										的	于疏水涂层 激光冲击方 法	第二发明人 (导师为第 一发明人)		2022. 02. 15	CN 113308600 B			
													Temperature-affected nano-deformatic behavior of nanometals in ultrahigh- strain-rate formation processes	n 第一	Nanoscale Horizons	2022	SCI	11.68	3										流	性 光控制熔池 动的激光复 増材制造方	第六发明人 (前五名为 导师和其他 老师)		2022. 01. 14	CN 112692304 B			
													A laser-shock-enabled hybrid additive manufacturing strategy with molten po modulation of Fe-based alloy		Journal of Manufacturing Processes	2022	SCI	5.684	ļ																		
工业科学研究院													Fatigue life evaluation of gold wire bonding solder joints in MEMS pressu sensors	re 1作	Journal of Micromechanics and Microengineering	2022	SCI	1.881	I										混	种干湿熄焦 合料仓的除 尘装置	学生1作	/	2022年	ZL20211133 0462.6			
	2	20191065 20012	3年	张云帆	李辉	全日 制学 术型	1年	F						Thermal fatigue analysis of gold wire bonding solder joints in MEMS pressu sensors by thermal cycling tests		Microelectronics Reliability	2022	SCI	1.589)										式	种柔性阵列 湿度压力传 器及其制备 工艺	学生2作		2022年	ZL20221036 6550X	参加国 家公派 联合培	
				טשי		· 博士							Investigation of potting-adhesive-induc thermal stress in MEMS pressure sens		Sensors	2021	SCI	3.847	,										计	种基于类脑 算的微压力 传感器	学生1作		2021年	ZL20201136 1649.8	养		
													Investigation of acoustic injection on the MPU6050 accelerometer	ne 1作	Sensors	2019	SCI	3.847	,										运	种用于皮带 输的声电综 合除尘装置	学生2作		2021年	ZL20191066 9684.7			
工业科学研究	3	20201065	⁵ 3年	骆麒 兆	胡雪蛟	全日 制学 术型 博士	半红	Ŧ					Utilization of low-grade heat for desalination and electricity generation through thermal osmosis energy conversion process	- 第一	Chemical Engineering Journal	2023	SCI	16.74	ı																		
院		20029'					ľ												All-Day Working Photovoltaic Coolin System for Simultaneous Generation of Water and Electricity by Latent Heat Recycling	f 共一	Chemical Engineering Journal	2023	SCI	16.74	ı												
工业科		20201065 20030'	3年			全日							Spurious-Free AIN/ScAIN-Based S1 Mode Lamb Wave Resonator with Trapezoidal Electrodes	第一	IEEE Electron Device Letters	2023	SCI	4.816	6																		
学研究院	4			罗天成	孙成 亮	制学 术型 博士	1年	年						A High-Sensitivity Gravimetric Biosensor Based on S1 Mode Lamb Wave Resonator		Sensors	2022	SCI	3.847	47																	
																	Design and Optimization of the Dual- Mode Lamb Wave Resonator and Dua Passband Filter		Micromachines	2022	SCI	3.523	3														
工业科 学研究 院	5	20201065 20002'	3年	严若鹏	雷诚	全日 制型 博士	1年	优秀 口头 汇报	:	1	202 . 11 28				Optics Express	2022. 5.12	SCI	3.833	3						中国	研究生	光电子	论坛		于弯曲波导 传输损耗	排名第2		2022年	ZL20211000 4124.7			
工业科 学研究 院	6	20201065 20019'	3年	李莉	郭宇	全日 制型 世	1年	F					Cyclocrosslinked polyphosphazene modified MXene as aqueous supercapacitor.	第一	Electrochimica Acta	2022	SCI	7.336	5																		