当前位置:首页 > 招生培养 > 研究生培养

博士生导师汤朝晖介绍

作者:admin     点击:648      时间:2017-09-30

 

 

Institute of Technological Sciences

 

Wuhan University, Wuhan, China

jautang@yahoo.com

155-2791-9122

 

 

Recent research fields:

  • 4D electron microscopy of photoinduced carrier dynamics, structural dynamics, phase transitions in metallic, semiconductor and carbon-based nanomaterials.
  • Nanoscience and Nanotechnology: Photoluminescence of Semiconductor and Metallic Nanoparticles; Confocal/AFM Single Molecule Spectroscopy; Quantum Dot Lasers; Quantum Dot Single-Photon Sources; Plasmonics;
  • Photophysics & Photochemistry: Femtosecond-Laser Induced Ultrafast Phenomena; Time-Resolved Electron/X-ray Diffraction of Nanomaterials; Photo-Induced Electron
    Transfer in Natural and Artificial Photosynthesis; Photovoltaics;
  • Nonlinear Fiber Optics Lightwave System and DWDM Transmission System Designs; Information Theory of Shannon Channel Capacity;                                 

 

Education

 

 

  • University of California, Berkeley; Ph.D. Physics, 1981, “Study of correlated motion by multiple quantum nuclear magnetic resonance spectroscopy”. Thesis adviser: Prof. Alex Pines
  • National Tsinghua University, Taiwan; M.S. Physics, 1976
  • National Taiwan University, Taiwan; B.S. Physics, 1974

 

Work experience

 

  • Distinguished Professor, Institute of Technological Sciences, Wuhan University, Wuhan, China (2017-present)
  • Senior Scientist, Dept. Chemistry, Caltech (2014-2017)
  • Research Fellow (2007 -2014)  Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
  • Associate Director (2007-2010), Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
  • Adjunct Professor, Institute of Photonics, National Chiao Tung University, Hsinchu, Taiwan (2007 -2014)
  • Senior Scientist, California Institute of Technology, Pasadena, California (2003-2007)
  • Senior Engineer, Opvista, California (2001-2002)
  • Member of Technical Staff, Bell Laboratories, New Jersey (1998-2001)
  • Physicist, Argonne National Laboratory, Illinois (1981-1998)

 

Awards & patent

 

2010 APS Fellow – American Physical Society, Citation: For his contributions in elucidating the structure and the radical-pair mechanism of photosynthetic systems, photoinduced charge transfer and blinking in single nanocrystals, as well as in developing multi-quantum NMR and linear prediction filtering techniques, and for his work on nonblinking and less toxic nanostructures for biophotonics.

Distinguished Scholar – Foundation for the Advancement of Outstanding Scholarship Taiwan, 2007-2011.

R&D 100 Award – top 100 innovations in US, R&D Research and Development Magazine, September (1988) for the contributions on linear prediction method in magnetic resonance.

Argonne Director’s Award – laboratory wide award by the Director of Argonne National Laboratory (1986) for my contribution to solving the x-ray structure of photosynthetic reaction center Rhodopseudomonas sphaeroides. This paper has received 500 Scientific citations till 2007

Two Argonne Pacesetter Awards - distinguished achievement award, 1986

U.S. Patent – Single-bunch synchrotron shutter, 1991

Service to science communities & editorship

 

 

 

 

 

 

 

 

 

 

 

 

Board Director of ANNA, Asian Nanoscience and Nanotechnology Association  (2010 - 2012)

Chairman of ANNA-Taiwan Regional Executive Committee (2010-2012t)

Senior Editor,  Nano Reviews (2009 – 2012)

Senior Editor, Nano Communications International (2012 )

Editorial Board of ISRN Physical Chemistry (2011 - 2012 )

Chairman, 2012 RCAS-ANNA Symposium on Recent Development in Nanomaterials: Structures, Dynamics and Applications, Oct. 4-5,, Taipei, Taiwan

Chairman, 2011 RCAS-ANNA Symposium on Studies of Nano and Bio-Materials using Laser, X-Ray and Single-Molecule Techniques, Nov. 17-18, Taipei, Taiwan

Organizing Committee AS-JIST Workshop on Innovative use of Light and Nano-bio Materials, May 26-27, 2011, Taipei, Taiwan

Chairman,  2010 International Symposium on General Aspects of Graphene, Carbon Nanotube and Ultrafast Phenomena of Nanomaterials, Nov. 15-16, Taipei, Taiwan

Organizing Committee and Session Chair , ACUP 2010 (the 6th Asian Conference of Ultrafast Phenomena), Taipei, Taiwan

Organizing Committee 6th Asian Countries Ultrafast Phenomena Conference –  Taipei, 2010

Chairman, RCAS-AIST Workshop on Single Molecule/Confocal Microscopy, RCAS, Academia Sinica, Oct. 15 (2009)

Reviewer for refereed journals -  PNAS, JACS, ACS Nano, J. Phys. Chem., J. Chem. Phys., Phys. Rev., APL, Chem. Phys. Lett.,  Anal. Chem., Lightwave Syst., Nanoscale, etc.

 

 


 

 

H-index: 30, accumulated citations > 2400

 

High Impact Factor (IF > 7) Publications

(Science, Nature, Nature Comm., Nano Lett., ACS Nano, PNAS, PRL, JACS)

  1. X. W. Fu, B. Chen, Jau Tang*, M. Th. Hassan, A. H. Zewail, Science 355, 994 (2017), “Imaging rotational dynamics of a nanoparticle in liquid by 4D electron microscopy”. (SCI IF = 34.66 )
  2. X. W. Fu*, B. Chen, Jau Tang*, A. H. Zewail, Science Advances 3, e1701160  (2017),

“Photoinduced nanobubbe-driven superfast diffusion of nanoparticles imaged by 4D electron microscopy”.

  1. M. Kaplan, B.K. Yoo, J. Tang*, D. Baltimore, G. J. Jensen*, A. H. Zewail, , Angewandte Chemie 56, 11498  (2017),

“Photon-induced near field electron microscopy of eukaryotic cells” . (SCI IF=11.99)

  1. E. Najafi, T. D. Scarborough, Jau Tang, A. H. Zewail , Science  347, 164 (2015),

“4D imaging of carrier interface dynamics in p-n junctions.

  1. B-K Yoo, O. H. Kwon, H. Liu, Jau Tang, A. H. Zewail, Nature Communications  6, No. 8639 (2015), “Observing in space and time the ephemeral nucleation of liquid-to-crystal phase transitions” (SCI IF =   11.33)
  2. H. Liu, O. H. Kwon, Jau Tang, A. H. Zewail. Nano Lett. 14, 946 (2014), ”4D Imaging and Diffraction Dynamics of Single-Particle Phase Transition in Heterogeneous Ensembles” (SCI IF = 13.78  )
  3. P. Yu, X. M. Wen, Y.-C. Lee, W.-C. Lee, C.-C. Kang* and J. Tang*, J. Phys. Chem. Lett. 4, 3596−3601 (2013),, “"Photoinduced Ultrafast Charge Separation in Plexcitonic CdSe/Au and CdSe/Pt Nanorods".  (SCI  IF = 8.54)
  4. P. Lee, W.‐C. Li, B.‐J. Chen, C.‐W. Yang, C.C. Chang, I. Botiz, G. Reiter, T. L. Lin, J. Tang, A. C.M. Yang, ACS Nano 7, 6659 (2013),
    “Massive Enhancement of Photoluminescence through Dewetting”. ". (SCI  IF = 11.421)
  5. C. T. Yuan, Y. G. Wang, K. Y. Huang, T. Y. Chen, P. Yu, J. Tang, A. Sitt, U. Banin, and O. Millo, ACS Nano 6, 176 (2012), "Single-Particle Studies of Band Alignment Effects on Electron Transfer Dynamics from Semiconductor Hetero-Nanostructures to Single-Walled Carbon Nanotubes". (SCI  IF = 11.421).
  6. J. Chen, W. K. Chen, J. Tang, P, M. Rentzepis, PNAS 108, no. 47, 18887 ( (2011),
    "Time Resolved X-ray Diffraction Studies on Ultrafast Melting, contraction and Wave Propagation in Au(111) thin crystal film induced by fs laser pulses". (SCI IF = 9.771).
  7. C. T. Yuan, P. Yu, H. C. Ko, J. Huang, and J. Tang, ACS Nano 3, 3051 (2009),
    "High Performance Nonblinking Single-Photon Sources".  (SCI  IF = 11.421).
  8. J. Tang and R. A. Marcus, Phys. Rev. Lett. 95, 107401 (2005),  “Diffusion-controlled Electron Transfer Processes and Power-law Statistics of Fluorescence Intermittency of  Nanoparticles”. (SCI IF = 7.621)
  9. V. A. Lobastov, J. Weissenrieder, J. Tang and A. H. Zewail, Nano Lett. 7, 2552 (2007),

“Ultrafast Electron Microscopy of Nanostructured Materials: 4D Imaging and Diffraction during Phase Transitions.”  (SCI IF = 13.198)

  1. J. Tang and J. R. Norris, Nature 333, 216 (1988),

"Padé Approximation and the Linear Prediction Method".  (SCI IF = 36.101)

  1. K. Hasharoni, H. Levanon, J. Tang, M. K. Bowman, J. R. Norris, D. Gust, T. A. Moore, and A. L. Moore, JCAS 112, 6477 (1990), "Singlet Photochemistry in Model Photosynthesis: Identification of Charge Separated Intermediates by Fourier Transform & CW EPR Spectroscopies". (SCI IF = 9.019)
  2. J. R. Norris, M. K. Bowman, D. E. Budil, J. Tang, C. A. Wraight, and G. L. Closs, Proc. Natl. Acad. Sci. U.S.A. 79, 5532 (1982), "Magnetic Characterization of the Primary State of Bacterial Photosynthesis". (SCI IF = 9.771)


 

Publications on 4D electron microscopy

  1. X. W. Fu, B. Chen, Jau Tang*, M. Th. Hassan, A. H. Zewail, Science 355, 994 (2017), “Imaging rotational dynamics of a nanoparticle in liquid by 4D electron microscopy”. (SCI IF = 34.66 )
  2. B. Chen*, X.W. Fu, Jau Tang*, M. Lysevych, H. H. Tan, C. Jagadish, A. H. Zewail. , PNAS.  (submitted), “Eutectic  dynamics and control of gold-encapped gallium arsenide nanowires imaged by 4D electron microscopy”.  “
  3. X. W. Fu*, B. Chen, Jau Tang*, A. H. Zewail, Science Advances  3, e1701160 (2017),
  4. “Photoinduced nanobubbe-driven superfast diffusion of nanoparticles imaged by 4D electron microscopy”.
  5. M. Kaplan, B.K. Yoo, J. Tang*, D. Baltimore, G. J. Jensen*, A. H. Zewail, Angewandte Chemie 56, 11498  ( 2017),
  6. ““Photon-induced near field electron microscopy of eukaryotic cells”
  7.  J. Cho*, T. Y. Hwang, E. Najari, H. Li, J. S. Baskin, Jau Tang*, A. H. Zewail,, Science Advances (to be submitted), “Observing dynamical crater-shaped charge distribution in monolayer graphene by 4D electron microscopy”.
  8. E. Najafi1, T. D. Scarborough, Jau Tang, A. H. Zewail, Science 347, 164 (2015), ”4D imaging of carrier interface dynamics in p-n junctions”.  
  9. B-K Yoo, O. H. Kwon, H. Liu, Jau Tang, A. H. Zewail, Nature Communications  6, No. 8639 (2015), “Observing in space and time the ephemeral nucleation of liquid-to-crystal phase transitions”.
  10. H. Liu, O. H. Kwon, Jau Tang, A. H. Zewail , Nano Lett. 14, 946 (2014),“4D Imaging and Diffraction Dynamics of Single-Particle Phase Transition in Heterogeneous Ensembles”,.
  11. J. Tang, J. Chem. Phys. 128, 164702 (2008),  “Coherent Phonon Excitation and Linear Thermal Expansion in Structural Dynamics and Ultrafast Electron Diffraction of Laser-Heated Metals”.
  12. V. A. Lobastov, J. Weissenrieder, J. Tang and A. H. Zewail, Nano Lett.  7, 2552 (2007),  “Ultrafast Electron Microscopy of Nanostructured Materials: 4D Imaging and Diffraction during Phase Transitions.“
  13. J. Tang, D. S. Yang and A. H. Zewail, J. Phys. Chem. C  111, 8957 (2007). “Time-resolved Ultrafast Electron Crystallography. III  Theoretical Modeling of Structural Dynamics”.

 


 

 

Scientific community service

Other than performing academic research in several interdisciplinary branches in chemistry, physics, biological sciences and engineering, I have served in many scientific communities and have organized several symposiums.

 

1) senior board director of Asian Nanoscience and Nanotechnology Association (ANNA) with its headquarter in Japan  with Prof. Ahmed H. Zewail as its Honorary President;

      2) chairman of the ANNA-Taiwan, the local chapter of ANNA in Taiwan;

3) senior editor of Nano Reviews & senior editor, Nano Communication International.

4) senior editor, Nano Communications International

5) editor of ISRN Physical Chemistry; the chair of 2011 RCAS-ANNA Symposium

6) chair, 2012 Symposium on Recent Development in Nanomaterials: Structures, Dynamics and Applications, Oct. 4-5, Taipei, Taiwan

7) chair, 2011 Symposium on “Studies of Nano and Bio-Materials using Laser, X-Ray and Single-Molecule Techniques”, Nov. 17-18, Taipei, Taiwan Studies of Nano and Bio-Materials using Laser, X-Ray and Single-Molecule Techniques, Nov. 17-18, Taipei, Taiwan, with over 250 participants; 

8) chair, 2010 International Symposium on “General Aspects of Graphene, CNT and Ultrafast Phenomena of Nanomaterials”, Nov. 14-16, Taipei, Taiwan, with over 300 participants;

9) chair, 2009 RCAS-AIST Workshop on “Single-Molecule and Confocal Microscopy”, Oct. 15, 2009, Taipei, Taiwan.

10) referee for many journals, including  PNAS, JACS, ACS Nano, J. Phys. Chem., J. Chem. Phys., Chem. Phys. Lett., Phys. Rev., Chem. Phys., Applied Physics Letters, Anal. Chem., J. Lightwave Systems, Nanoscale, Nano Reviews, J. Chinese Chem. Soc., etc. 

11) co-organized several other conferences and workshops on various subjects related to nanosciences.

 


 

 

Major contributions:

  1. Award winning work on the x-ray structural determination of photosynthetic reaction center.  Working with the team members at Argonne National Laboratory, we determined in late 1985 the x-ray protein structure of Rhodopseudomonas sphaeroides R-26 reaction center.  This work was parallel to the other work by German scientists Deisenhofer, Huber and Michel who were awarded a 1988 Nobel Prize in Chemistry for their x-ray structural determination work on a different species viridis . My major contribution in this team work is to develop efficient method to solve the x-ray phase problem.  Because of my being able to solve it to allow full crystal structure determination promptly, the Argonne team won the the very competitive race with other group lead by G. Feher at UC San Diego who was also working on the same species as ours.  Our work was awarded in 1986 an Argonne National Laboratory Director Award, the highest achievement award in Argonne. Due to its scientific importance, this paper (ref. 23) has been cited more than 500 times.

 

  1. R&D 100 Award winning development of the linear prediction (LP) method.  This method could be applied to any FFT-based  spectroscopy, such as NMR, FTIR, EXFAS, image processing, etc.   It avoids signal truncation artifacts encountered by FFT to provide improved spectral resolution and noise filtering. Taking NMR FID signals as an example, signal truncation often leads to degradation in spectral resolution and sinc wiggling artifacts in FFT spectroscopy. These problem can be avoided with linear prediction analysis of the given truncated data record  to “predict” forward or backward in time, or recover unrecorded data. In addition, the LP method provides filtering capability to reject noise with no correlation in time and to retain the coherent signals which have long correlation time constants.   My work on 1-D and 2-D LP signal processing (refs. 15, 20, 21, 35) was selected as one of the top 100 innovations in US, and was recognized widely by receiving an R&D 100 Award from the R&D Research and Development Magazine, September in 1988. My LP work was presented an Argonne Pace Award from the ANL director in 1986.

 

  1. Elucidation of the mechanism for the inverse power law blinking statistics of single quantum dots (QDs).  By extending the electron transfer theory for an ensemble system with indistinguishable particles to a single and distinguishable nanoparticles system such as a quantum dot or a nanorod, we (with Nobel Laureate R. Marcus from Cal Tech) provide a model based on diffusion-controlled electron transfer reactions to explain how the spectral diffusion due to energy fluctuations for the light and dark states affects the electron transfer between there two states to cause the inverse power-law behavior for the waiting time distribution for both the light and the dark events. With our model, we can explain naturally the causes for the inverse power-law blinking, the exponent of the power law and the long-time exponential tail.  Our model has been able to explain successfully many experimental measurements. Two of pioneering publications (refs. 83-84)  on this subject since 2005 have received high citations with total no. of citation ~ 300 times.

 

  1. 4D electron microscopy of photoinduced carrier dynamics, structural dynamics and Brownian dynamics of nanomaterials. I established pin in our 2015 Science paper hotoinduced ballistic charge carrier dynamics across p-n junction p-n junction. Unlike carrier diffusive processes in bulk semiconductors, we have found that these hot electrons and holes move as ballistic objects as a result of weak electron-phonon interactions on the surface, In another work (Nature Comm.) we demonstrated two-stage nanocrystal growth involving intermediate nucleation state which involves isothermal process at the phase transition temperature. In another work, we discover unusual ultrafast carrier dynamics in graphene involving Auger-assisted relaxation with optical phonons and surface plasmons to cause fast exciton annihilation and to result in crater-shaped spatial charge distribution in USEM images. In several other work using 4D electron microscopy, submitted to Science, Nature Phys., and Nature Comm, we have investigated fast  rotational and translational dynamics of fs laser-heated gold nanodimers and spherical nanoparticles in liquid cells, discovering a wide range of ballistic, superdiffusion and normal Brownian diffusion regimes and elucidating steam nano bubbles as driving forces. We have also in another work demonstrated the utilize electron-surface plasmonic wave interactions to improvecellular imaging of receptor-ligand interactions and conformational changes in biological systems.

 

  1. Control of fluorescence blinking and blinking suppression.  Although fluorescence blinking is a very interesting physical phenomenon, it is an undesirable feature in many applications for the QD as a light source in optoelectronics applications or fluorescence label in bioimaging applications. .Therefore, control of blinking and its suppression are important issues.  We demonstrated (ref.  106 ) blinking can be fully suppressed via plasmonic effect when QDs were coupled to silver nanoprisms at a proper distance.  We have also demonstrated that by changing the electrostatic environment of QDs, the photoluminescence properties of QDs such as fluorescence lifetime and blinking behavior could be influenced.  We have shown by confined the QDs in agarose gel with negatively charged fiber molecules and no-sized pores (ref. 113, 126), or with a change of the pH value of the surrounding environment of QDs (135), we could partially or even completely suppress the blinking behavior.  Moreover, we have demonstrated for the first time that the reorganization energy  for the electron transfer is  relatively small and we have observed the interesting Marcus inverted regime for the electron transfer for QDs in gel with a low pH.

 

  1. Development of high performance single photon sources and nano-sized lasers.   Single photon source at room temperature is desirable for quantum information technology.  Recently, we demonstrated a high performance nonblinking single photon source (ref. 110).  In a such a prototype device, we showed that by properly coupling to silver nanoprisms single CdSe/ZnS semiconductor quantum dots (QDs) exhibit suppressed blinking behavior, an enhanced fluorescence intensity (~2.5 fold), increased radiative decay rates (~12.5 fold).  Our observation of anti-bunching single-photon emission clearly indicated that each QD is a single-photon emitter. We have also used another approach to fabricate a single-photon emitter by placing a single QD on a nanodisk. We have observed single photo emission from such a coupled QD parallel to the plane of the nanodisk (ref. 134).  Recently, also demonstrated better control of the light emission from such a single-photon source by coupling it to a nano-antenna based on plasmonic effects.  In addition, we have used the nanodisk as a resonant cavity to support the whispering galley modes of QDs which behave as a gain medium.  With a device, we demonstrated a prototype nanolaser with a very low threshold operation power at only about 1 mW.

 

  1. Laser heating and ultrafast structural dynamics of nanomaterials.  We developed theoretical modeling  to analyze time-resolved electron (with Nobel Laureate A. H. Zewail from Cal Tech) or x-ray diffraction (with P. M. Rentzepis from UC Irvine) measurements of nanomaterials heated by a femtosecond laser.   By combing the Fermi-Pasta-Ulam (FPU) anharmonic chain model with the two-temperature model (refs.  92, 97) , we were able to provide quantitative  account for the photoinduced coherent acoustic phonon excitation of metallic nano-structured materials.  More recently, this1-D model was generalized to multi-dimension to explain planar phonon mode excitations of silver nanoprisms and other multi-mode excitation of nanoparticles of different shapes such as nanocubs, nanorods, etc. In another experimental work we were able to determine at room temperature the electronic Grüneisen parameter from the photo-excited coherent acoustic vibrational phonon modes and their laser fluence dependence.  Unlike our room temperature measurement approach using the pump-probe techniques, the determination of such a parameter usually was done at the cryogenic temperature using a different method called dilatometerry.  We have also obtained excellent agreement between theoretical modeling and the experimental data of laser induced melting of gold single crystals from time-resolved x-ray diffraction (ref. 136).  We have observed large deviations from predicted linear temperature dependence by the Drude model for the electron thermal conductivity and specific heat.  More recently, we have investigated experimentally nonlinear optical absorption of carbon-based nanomaterials such as carbon nanotubes and grapheme and their derivatives  to develop cost-effective saturable absorbers for high power passive mode locking in picosecond to femtosecond laser pulse generation to replace the conventional expensive semiconductor saturable absorber mirrors (SESAM) (ref.  126).

 

  1. Elucidation of the carrier dynamics and the fluorescence mechanisms for gold nanoclusters and carbon nanodots.  We have used fs laser techniques and confocal microscopy with time-correlated single-photon counting techniques to investigate the carrier dynamics and the mechanisms for the fluorescent gold nanoclusters and carbon nanodots (ref. 165-168).  We elucidated the delayed fluorescence mechanism due to the singlet-triplet crossing mechanisms and we determined the energetics for the involved electronic states. These novel nanomaterials can have great potential applications for optoelectronics as LEDs and quantum light sources as well as in biosensing and fluorescence markers.

 

  1. Exploring the radical-pair mechanism of photoinduced electron transfer processes using electron spin resonance.  We (with J. R. Norris at U. of Chicago) demonstrated (ref. 53) how to measure the exchange and electron-electron dipolar interactions from electron spin echo envelope modulation and free induction decay in a photo-induced spin-correlated radical pair. The modulation frequencies provide useful information for systems with small exchange and dipolar interactions even if the hyperfine inhomogeneity often produces unresolved spectra in cw EPR.  In addition, we have also demonstrated  experimentally and theoretically the use of  EPR at X-band as well as at K- and W-band (refs.  6, 38, 74-76) based on the radical pair mechanism to characterize the charge transfer processes and the structures in natural and artificial photosynthetic systems. We have also demonstrated (refs.  10, 63) the use of EPR line shape analysis  to determine fast spin migration dynamics in a linear chain  or loop, such as mobile soliton in polyacetylene and electron hopping in a photosynthetic light harvesting antenna, etc. 

 


 

 

Complete Publication List

H Index = 30

Accumulated citations > 2500

 

197) X. W. Fu, B. Chen, Jau Tang*,, M. Th. Hassan, A. H. Zewail, Science 355, 994 (2017),

“Imaging rotational dynamics of a nanoparticle in liquid by 4D electron microscopy”,

196) B. Chen*, X.W. Fu, Jau Tang*, M. Lysevych, H. H. Tan, C. Jagadish, A. H. Zewail. , PNAS  (submitted),

“Eutectic  dynamics and control of gold-encapped gallium arsenide nanowires imaged by 4D electron microscopy”.  “

195) X. W. Fu*, B. Chen, Jau Tang*, A. H. Zewail, Science Advances  (2017),

“Nanobubbe-driven superfast Brownian dynamics of photoexcited gold nanoparticles using 4D electron microscopy”.

194) M. Kaplan, B.K. Yoo, J. Tang*, D. Baltimore, G. J. Jensen*, A. H. Zewail, Angewandte Chemie 3, e1701160 (2017),

“Cellular PINEM imaging of ligand-induced receptor conformational changes by 4D electron microscopy”.”.

 

193) B. Chen*, B-K Yoo, J. Tang*, M. Lysevych, H. H. Tan, C. Jagadish, A. H. Zewail. Nature Nanophotonics. (in preparation), 

 “Imaging photoinduced charge separation in gold encapped core-shell quantum wires by PINEM ”,

 

192) J. Cho*, T. Y. Hwang, E. Najari, H. Li, J. S. Baskin, Jau Tang*, A. H. Zewail, Science Advances  (to be submitted),

“Observing dynamical crater-shaped charge distribution in monolayer graphene by 4D electron microscopy”,

 

191) E. Najafi1, T. D. Scarborough, Jau Tang, A. H. Zewail, Science 347, 164 (2015),

,”4D imaging of carrier interface dynamics in p-n junctions”.  

190) B-K Yoo, O. H. Kwon, H. Liu, Jau Tang, A. H. Zewail, Nature Communications  6, No. 8639 (2015),

“Observing in space and time the ephemeral nucleation of liquid-to-crystal phase transitions,

189)H. Liu, O. H. Kwon, Jau Tang, A. H. Zewail , Nano Lett. 14, 946 (2014),

“4D Imaging and Diffraction Dynamics of Single-Particle Phase Transition in Heterogeneous Ensembles”,.

 

188) X. M. Wen, P. Yu, X. Ma, Y.-R. Toh and J. Tang, Chem. Comm. (in press, 2014),

“On the Upconversion Fluorescence in Carbon Nanodots and Graphene Quantum Dots".

 

187) H. H. Liu, O. H. Kwon, J. Tang and A. H. Zewail, Nano Lett. 7, 2552 (2014),

“4D Imaging and Diffraction Dynamics of Single-Particle Phase Transition in Heterogeneous Ensembles”.

 

186) X. Ma, X. M. Wen*, Y.-R. Toh, K.-Y. Huang, J. Tang and P. Yu*, Nanotechnology 25, 445 (2014),

 "Dynamic study on the atomically precise size transformation process of gold nanoclusters" ..

 

185) X. M. Wen*, P. Yu*, Y.-R. Toh, Y.-C. Lee, K. Y. Huang, S. Huang, S. Shrestha, G. Conibeer and J. Tang*, J. Mater. Chem. C2, 3826  (2014),

"Ultrafast Directional Electron Transfer in Nanocomposite of Graphene Oxide/Au Nanocluster with Graphene Oxide As a Donor"

 

184) X. M. Wen*, P. Zhang, T. Smith, R. J. Anthony, U. R. Kortshagen, P. Yu, Y.-R. Toh, J. Tang, Y. Feng, S. Shrestha, G. Conibeer, M. Green and S. Huang*, Phys. Rev. Lett.,

"The Origin of Photoluminescence and Correlation with Surface State in Colloidal Silicon Nanocrystals" (submitted).

 

183) P. Yu*, X. M. Wen*, Y.-R. Toh, X. Q. Ma, and J. Tang*, Nano Comm. Int., "Dynamics, Structures and Applications of Metallic Nanoclusters" ( invited review article).

 

182) P. Yu*, X. M. Wen, Y.-R. Toh, Y.-C. Lee, K.-Y. Huang, S. Huang, S. Shrestha, G. Conibeer and J. Tang*, J. Mater. Chem. C2 2894 (2014).

  "Efficient Electron Transfer in Carbon Nanodot-Graphene Oxide,

 

181) P. Yu, X. M. Wen, Y.-C. Lee, W.-C. Lee, C.-C. Kang* and J. Tang*, J. Phys. Chem. Lett. 4, 3596−3601 (2013),

"Photoinduced Ultrafast Charge Separation in Plexcitonic CdSe/Au and CdSe/Pt Nanorods".

 

180) C. T. Yuan, Y. C. Wang, H. W. Cheng, H. S. Wang, M. Y. Kuo, M. H. Shih, J. Tang*, J. Phys. Chem. C 117, 12762 (2013),

 "Modification of Fluorescence Properties in Single Colloidal Quantum Dots by Coupling to Plasmonic Gap Modes".

 

179) H. W. Cheng, Y. C. Chang, C. T. Yuan, S. N. Tang, C. S. Chang, J. Tang, F. R. Chen, R. L. Pan, F. G. Tseng*, J. Phys. Chem. C 117, 13239 (2013),

"Simple and Fast Method To Fabricate Single-Nanoparticle-Terminated Atomic Force Microscope Tips".

 

178) H. W. Cheng, Y. C. Chang, S. N. Tang, C. T. Yuan, J. Tang, F. G. Tseng, Nanoscale Res. Lett. 8, 482 (2013),

"Characterization of single 1.8-nm Au nanoparticle attachments on AFM tips for single sub-4-nm object pickup".

 

177) C. T. Yuan, C. A. Lin, T. N. Lin, W. H. Chang, J. L. Shen, H. W. Cheng, and J. Tang*, J. Chem. Phys. (in press, 2013,

 “Probing Electronic Triplet States of Fluorescent Gold Nanoclusters at the Single-Molecule Levels”.

 

176) X. M. Wen, P. Yu, , J. Tang* and V. Podzorov, J. Phys. Chem. C 117, 17741–17747 (2013), “Singlet and Triplet Carrier Dynamics in Rubrene Single crystal”.

 

175) X. M. Wen*, P. Yu, Y.-R. Toh, X. Q. Ma, S. J. Huang and J. Tang*, Nanoscale 5, 10251-10257 (2013), "Fluorescence Origin and Spectral Broadening Mechanism in Atomically Precise Au8 Nanoclusters".

 

174) P. Yu*, X. M. Wen, Y.-R. Toh, Y.-C. Lee and J. Tang*, RSC Adv. 3, 19609-19616 (2013),"Optical Properties of Gold Particle-Cluster Core-Satellite Nanoassemblies".

 

173) M. Y. Ng, P. Yu, J. Tang*, Y. C. Chang*, J. Phys. Chem. C 117, 13697–13707 (2013), "Sound Wave Propagation Anisotropy in Silver Nanoprisms: Characterization of Photoinduced Multiple Modes Using the Symmetric Molecular Dynamics Method".

 

172) J. Tang, A. Oguz-Er, J. Chen and P. M. Rentzepis, J. App. Phys. (submitted),
"Acoustic blast waves in a bilayer metallic film induced by femtosecond pulsed laser: A time-resolved X-ray diffraction study".

171) H. W. Cheng, C. T. Yuan, J. S. Wang,T. N. Lin, J. L. Shen,Y. J. Hung,F. G. Tseng, and J. Tang, JPC C (in press),
"A Trade-off between Pure Single-Photon Emission and Blinking Suppression in Single Colloidal Quantum Dots".

170) P. Yu, X.M. Wen, Y.R. Toh, Y.C. Lee, X.Q. Ma and.J. Tang, Nanoscale (in press, 2013),
"Optical Properties of Gold Particle-Cluster Core-Satellite Nanoassemblies".

169) P. Lee, W.‐C. Li, B.‐J. Chen, C.‐W. Yang, C.C. Chang, I. Botiz, G. Reiter, T. L. Lin, J. Tang, A. C.M. Yang, ACS Nano (in press, 2013),
Massive Enhancement of Photoluminescence through Dewetting”.

168) C. T. Yuan, Y. C. Wang, H. W. Cheng, H. S. Wang, M. Y. Kuo, M. H. Shih, and J. Tang, JPC C 117 (24) 12762 (2013),
"Concurrent Enhancement of Exciton and Bi-exciton Quantum Yields of Single Colloidal Quantum Dots by Coupling to Plasmonic Gap Modes".)

167) M. Y. Ng, P. Yu, J. Tang*, Y. C. Chang*, J. Phys. Chem. C 117, 13697–13707 (2013), "Sound Wave Propagation Anisotropy in Silver Nanoprisms: Characterization of Photoinduced Multiple Modes Using the Symmetric Molecular Dynamics Method".

166) X.M. Wen, P. Yu, Y.R. Toh, X.T. Hao, and Jau Tang, Adv. Opt. Materials 1 173 (2013),
"Intrinsic and Extrinsic Fluorescence in Carbon Nanodots: Ultrafast Time-Resolved Fluorescence and Carrier Dynamics".

165) P. Yu, X. M. Wen, Y. C. Lee, W. Y. Hsu, C. C. Kang, and J. Tang Chem. Phys. Chem. (submitted), 
"Ultrafast Carrier Dynamics in Plexcitonic CdSe/Au and CdSe/Pt Nanorodss".

164) H. W. Cheng, Y. C. Chang, C. T. Yuan, S. N. Tang, C. S. Chang, J. Tang, F. R. Chen, R. L. Pan, F. G. Tseng, JPC C (2013),
"Simple and Fast Method to Fabricate Single-Nanoparticle-Terminated AFM Tips/

163) A. Oguz Er, J. Chen, J. Tang, and P. M. Rentzepis, APL 102. 051915 (2013),
"Laser Induced Acoustic Phonon Propagation in Cu/Ag(111) by Time-resolved X-ray Diffraction".

162) Y. R. Toh, P. Yu, X. M. Wen and J. Tang, Journal of Colloid and Interface Science 402, 86(2013),
"The Enhancement of Electron-Phonon Coupling in Glutathione-protected Au25 Clusters".

161) Y.R. Toh, P. Yu, J. Tang and T. S. Hsieh, Nanoscale Res. Lett. 8 103 (2013),
"Induced pH-Dependent Shift by Local Surface Plasmon Resonance in Functionalized Gold Nanorods”

160) C. R. Tsai, M. S. Chen, T. S. Hsieh, Y. R. Toh, J. Huang, H. C. Ko, P. Yu and J. Tang, J. of Mater. Chem. B (submitted),
"Cellular Uptake and Localization of Gold NanocubesCellular Uptake and Localization of Gold Nanocubes".

159) C. T. Yuan, J. Huang and J. Tang, Appl. Phys. Lett. (submitted),
"Influence of External Electron Donors and Acceptors on Fluorescence Blinking of Single CdSe/ZnS Quantum Dots".

158) P. Yu, X.M. Wen, Y.R. Toh, J. Huang and J. Tang, Particle & Particle Systems Characterization 30 467 (2013),
"Metallophilic bond induced quenching of delay fluorescence in Au25@BSA nanoclusters".

157) X. M. Wen, P. Yu, Y. R. Toh and J. Tang, JPC C 117, 3621 (2013),
"The Quantum Confined Stark Effects in BSA Protected Au8 and Au25 Gold Nanoclusters".            

156) P. Yu, X.M. Wen, Y.R. Toh and J. Tang, JPC C 116, 25552 (2013),
"Temperature Dependent Fluorescence in Carbon Dots.”

155)  J. Tang, Y. G. Wang, S. M. Cheng, P. Yu, K. Y. Huang and C. T. Yuan, Proc. SPIE, 8462, 8462OK-1 (2012),
"Applications of Single-Walled Carbon Nanotubes and Type-II Quantum Dots in Photovoltaics and Passive Mode-Locking Saturable Absorbers". 

154) X.M. Wen, P. Yu, Y.R. Toh, Y.C. Lee, A.C. Hsu, and J. Tang, APL 101, 163107 (2012),
"Near infrared enhanced carbon quantum dots by thermally assisted grown. ”. H. M. 153) Cheng, K. Y. Huang, P. Yu, A. C. Hsu, J. H. Huang and J. Tang , PCCP 14, 13539 (2012), 
"High-efficiency cascade CdS/CdSe quantum dot-sensitized solar cells based on hierarchical tetrapod-like ZnO nanoparticles”.

152) X. M. Wen, A. Sitt, P. Yu, H. C. Ko, Y. R. Toh and J. Tang, J. Nanopart. Res. 14 1278 (2012),
"Studies of photostability of dot-in-rod CdSe/CdS nanoparticles".X. M. Wen, P. Yu,

151) Y. R. Toh and J. Tang, JPC C 116,19032(2012),
"Fluorescence Dynamics in BSA-Protected Au25 Nanoclusters".

 150) X. M. Wen, P. Yu, Y. R. Toh and J. Tang, JPC C 116, 11830 (2012),
"Structure-Correlated Dual Fluorescent Bands of BSA- Protected Au25 Nanoclusters".

149) L.D. Tuyen, J.H. Lin, C,Y. Wu, P.T. Tai, J. Tang, L.Q. Minh, H.C. Kan, and C.C. Hsu, Opt. Exp. 20, 15418(2012),
"Pumping-power-dependent photoluminescence angular distribution from an opal photonic crystal composed of monodisperse Eu3+/SiO2 core/shell nanospheres".

148) Y. C. Wang, C. T. Yuan, M. Y. Kuo, M. C. Wu, J. Tang, and M. H. Shih, Appl. Phys. Lett. 100, 253110 (2012),
"Enhancement of the Purcell Effect for Colloidal CdSe/ZnS Quantum Dots Coupled to Silver Nanowires by a Metallic Tip".

147) J. Huang, P. Yu, C. T. Yuan, H. C. Ko, J. Tang and T. S. Hsieh, J. Nanophotonics Lett. 6, 069502 (2012),
"Single-Particle Studies of the Plasmonic Fluorescence in Gold Nanocubes

146) S. Y. Cheng, Y. G. Wang, J. Tang, L. Zhang, L. Sun, X. C. Lin, and J. M. Li, Optik 123 1279 (2012),
"Semiconductor Type Single Wall Carbon Nanotube Absorber for Passive Mode-Locked Nd: WO4 Laser

145) P. Yu, P. T. Tai, C. T. Yuan and J. Tang, AAPPS Bulletin (Assoc. Asia Pacific Physicical Societies), 22, 9 (2012) (invited paper),
"Coheretn phonon excitation and plasmonic effects of silver nanoprisms as studied by transient optical absorption and confocal microscopy".

144) A. Oguz-Er, J. Chen, J. Tang, and P. M. Rentzepis, Appl. Phys. Lett. 100, 151910 (2012),
"Coherent Acoustic Wave Oscillations and Melting on Ag(111) Surface by Time Resolved X-ray Diffraction".

143) Y. G. Wang, H. R. Chen, X. M. Wen, W. F. Hsieh and J. Tang, Opt. Commun. 285, 1891 (2012),
"Wall paper single-walled carbon nanotubes absorber for passively mode-locked Nd:
GdVO4 laser

142) Y. G. Wang, S. Y. Chenga, P. T. Tai, J. Tang, Optik 123, 348 (2012),
“Saturable absorber at 940 nm using single wall carbon nanotubes deposited by vertical evaporation technique”.

141) S. Y. Cheng, Y. G. Wang, P. Yu, Y. J. Cheng, J. Tang, H. R. Chen, and W. F. Hsieh, Laser Phys. 22, 54, (2012),
"Fabrication of Aligned Single Wall Carbon Nanotube Absorbers for High Power Passive ModeLocked Nd:GdVO4 Laser".

140) H. Y. Ahn, C. C. Yu, P. Yu, J. Tang, Y. L. Hong, and S. J. Gwo, Opt. Exp. 20 769 (2012),
"Carrier dynamics of InN nanorod arrays".

139)P. Yu, X. M. Wen, Y. R. Toh and J. Tang, JPC C 116, 6567 (2012),
"Temperature dependent fluorescence in Au10 nanoclusters". 

138) X. M. Wen, A. Sitt, P. Yu, Y. R. Toh and J. Tang, Phys. Chem. Chem. Phys. 14, 3505 (2012),
"Temperature dependent spectral properties of type-I and quasi type-II CdSe/CdS dot-in-rod nanocrystals".C. T. Yuan, Y. G. Wang, K. Y. Huang,

137) T. Y. Chen, P. Yu, J. Tang, A. Sitt, U. Banin, and O. Millo, ACS Nano 6, 176 (2012),
"Single-Particle Studies of Band Alignment Effects on Electron Transfer Dynamics from Semiconductor Hetero-Nanostructures to Single-Walled Carbon Nanotubes

136) J. Chen, W. K. Chen, J. Tang*, P, M. Rentzepis, PNAS 108, no. 47, 18887 (2011),
"Time Resolved structural dynamics of thin metal films heated with femtosecond optical pulses".

 

135) Y. G. Wang, H. R. Chen, X. M. Wen, W. F. Hsieh and J. Tang*, Nanotechnology 22, 455203, 2011),

"A highly efficient graphene oxide absorber for Q-switched Nd:GdVO(4) lasers".

 

134) Y. C. Wang, C. T. Yuan, Y. C. Yang, M. C. Wu, J. Tang* and M. H. Shih*, Nano Rev. 2, 7275 (2011),
"High efficient silicon nanodisk laser with colloidal CdSe/ZnS QDs".

 

133) Q. Yang, D. Liu, J. Liu*, Y. G. Wang, J. Tang, L.H. Zheng,L.B. Su, J. Xu, Opt. Eng. 50, 114202 (2011),
" Efficient diode-pumped Yb:LuYSiO5 laser mode locked by single-walled carbon nanotube absorber"

 

132) H. C. Ko, C. T. Yuan, S. H. Lin, and J. Tang , J. Phys. Chem. C , 13977 (2011),

"Observation of Inverted Regime Electron Transfer in CdSe/ZnS QDs from pH-Sensitive Single-Particle and Ensemble Fluorescence Measurements".

 

131) C. T. Yuan, Y. C. Wang, Y. C. Yang, M. C. Wu, J. Tang and M. H. Shih, App. Phys. Lett. 99, 053116 (2011),

"Modification of Spontaneous Emission Rates in Single Colloidal CdSe/ZnS QDs by a Submicron-sized Dielectric Disks".

(selected by Virtual Journal of Nanoscale Science & Technology, August 15, 2011 issue)

 

130) S. D. Pan, Y. G. Wang and J. Tang, Laser Phys. 21, 867 (2011),

"Diode Pumped Passively Q Switched and Q Switch Mode Locked Nd:YVO4 Laser Using Single Wall Carbon Nanotube Based Saturable Absorber1".

 

129) P. T. Tai, P. Yu and J. Tang, J. Chem. Phys. 134, 184506 (2011),

"Effects of Shape-Induced Anisotropic Electronic Stresses on Multimode Coherent Acoustic Phonons of Metallic Nanoprisms by a Femtosecond Laser Pulse".

(selected for the June 2011 issue of Virtual Journal of Ultrafast Science)

 

128)Y.G. Wang, S. Z. Qu, J. Liu, P. Yu, J. Y. Tai, Y. J. Hung and J. Tang, Laser Phys. 21, 1 (2011),

"Fabrication and Characterization of Double-Wall Carbon Nanotube Absorber for Passive Mode-Locked Nd: GdVO4 Laser".

 

127)  L. Zhang, Y. G. Wang, H. J. Yu, L. Sun, L. Guo, W. Hou1, J. Tang, X. C. Lin, J. M. Li, Laser Phys. 21, 454 (2011),
"880 nm LD Pumped Passive Q-switched and Mode-Locked Nd:YVO4 Laser using a Single-Walled Carbon Nanotube Saturable Absorber".

 

126) H.R. Chen, Y.G. Wang, C.Y. Tsai, K.H. Lin, T.Y. Chang, J. Tang and W.F. Hsieh, Opt. Lett. 36, 1284 (2011),

"High-Power Passively Mode-Locked Nd:GdVO4 Laser using Single-Walled Carbon

Nanotubes as Saturable Absorber".

 

125) H.C. Ko, C. T. Yuan and J. Tang, Nano Rev. 2, 1 (2011),

"Probing and Controlling Fluorescence Blinking in Single Semiconductor Nanoparticles".

 

124) P. T. Tai, Y. G. Wang, and J. Tang, Opt. Commun. 284, 1303 (2011),
"Single-Wall Carbon Nanotube-Poly (vinylalcohol) Absorber Deposited by Vertical Evaporation Method".

 

123)  P. Yu, J. Huang, C. T. Yuan and J. Tang, Nanoscale Res. Lett. 6, 46 (2011),
"Observation of Coalescence Process of Silver Nanospheres during Shape Transformation to Nanoprisms".

 

122) J. Tang and P. T. Tai, Scientific American, Chinese Edition (科學人雜誌) Sept. 103 (3), 86 (2010, Invited paper),
"The Nanoworld in Femotoseconds", "飛秒下的奈米世界".

 

121) H. C. Ko, C. T. Yuan, P. Yu, J. Huang and J. Tang, Proceeding of SPIE, 7758 OU 1-12 (2010),
"Environmental Effects on Photoinduced Electron Transfer and Fluorescence Blinking of Single Semiconducting Nanocrystals in Various Matrices".

 

120)  戴伯澤, 於平, 湯朝暉, "脈衝雷射引發奈米金屬粒子的超快結構動力學 (Ultrafast Structural Dynamics of Metallic Nanoparticles Induced by Femtosecond Laser Pulses)", ROC 物理雙月刊 May 2010, 32 (3), 4 (invited paper).

 

119) P. Yu, C. T. Yuan, H. C. Ko, J. Huang and J. Tang, SPIE Proceeding 7608 76082I-1 (2010),
"Blinking Suppression and Anti-Bunching of Quantum Dots as Single-Photon Sources".

 

118) P. T. Tai, P. Yu and J. Tang, Chem. Phys. 374 126 (2010),
"2-D Modeling of Dual-Mode Acoustic Phonon Excitation of a Triangular Nanoplate".

 

117) H. C. Ko, C. T. Yuan, J. Huang, S. H. Lin, and J. Tang , JCCS 57, No. 3, 1 (invited paper, 2010),
"Blocked Electron Transfer and Suppressed Blinking of Single CdSe/ZnS Quantum Dots in Agarose Gel".

 

116) P. Yu, J. Huang, C. T. Yuan and J. Tang, JCCS 57, No. 3B, 1 (invited paper, 2010),
"Synthesis of Silver Nanoprisms and Nanodiscs and applications in fluorescence blinking suppression".

 

115) P. T. Tai, P. Yu and J. Tang , Chem. Phys. Lett. (in press, 2010),
"Selective Acoustic Phonon Mode Excitation of Multi-mode Silver Nanoprisms".

 

114) J. Tang , Nano Reviews 1, 5031 (2010),
"Random On-Off Telegraphic Signaling in Single Nanoparticles and Molecules".

 

113) H. C. Ko, C. T. Yuan, S. H. Lin, and J. Tang , Appl. Phys. Lett. 96, 012104 (2010),
"Suppressed Blinking of Single Quantum Dots Confined in Agarose Gel".

 

112) G. W.  Shu, C. C. Lin, H. P. Chang, J. L. Shen, C. A. J. Lin, C. H. Lee, W. H. Chang, W. H. Chan, H. H. Wang, C. T. Yuan and J. Tang, Appl. Phys. Lett. (in press),

“Recombination Dynamics of Photoluminescence in Thiol-Protected Gold Nanoclusters”.

 

111) D. H. Lee, C. T. Yuan, M. Tachiya and J. Tang , Appl. Phys. Lett.  95, 163101 (2009),
"Influence of bin time and excitation intensity on fluorescence lifetime distribution and blinking statistics of single quantum dots".

 

110) C. T. Yuan, P. Yu, H. C. Ko, J. Huang, and J. Tang, ACS Nano 3, 3051 (2009),
"Antibunching Single-Photon Emission and Blinking Suppression of CdSe/ZnS Quantum Dots".".

 

109) P. T. Tai, P. Yu and J. Tang , J. Phys. Chem. C 113, 15014 (2009),
"Determination of the electronic Grüneisen parameter from the photo-excited coherent acoustic vibrational phonon modes and their laser fluence dependence".

 

108) J. Tang , D. H. Lee, Y. C. Yeh and C. T. Yuan, J. Chem. Phys.131, 064506 (2009),
"Short-time power-law blinking statistics of single quantum dots and a test of the diffusion-controlled electron transfer model".

(selected for the Aug. 31, 2009 issue of Virtual Journal of Nanoscale Science & Technology)

 

107) J. Tang, P. Yu, P. T. Tai and S. H. Lin, SPIE Proceeding 7214 72140F-1 (2009),
"Photoinduced ultrafast structural dynamics of nanomaterials".

 

106) C. T. Yuan, P. Yu and J. Tang , Appl. Phys. Lett. 94, 243108 (2009),
"Blinking Suppression of Colloidal CdSe/ZnS Quantum Dots by Coupling to Silver Nanoprisms"
 

105) P. T. Tai and J. Tang, J. of Scientific Conference Proceedings 1, 1 (2009),
"Coherent Acoustic Phonon Excitation in Nanoprisms by a Femtosecond Impulse".

 

104) C. T. Yuan, C. Chou, J. Tang, C. A. Lin, W. H. Chang, J. L. Shen, and D. S. Chuu, Opt. Exp. 17, .16111 (2009),
"Single fluorescent gold nanoclusters".

 

 103) Y. C. Yeh, C. T. Yuan, C. C. Kang, P. T. Chou and J. Tang, Appl. Phys. Lett. 93,, 223110 (2008)

 ,"Influences of light intensity on fluorescence lifetime of nanorods and quantum dots".
 

102) P. Yu, J. Tang and S. H. Lin, J. Phys. Chem. C 112, 17133 (2008),

“Photoinduced Structural Dynamics in Laser-Heated Nanomaterials of Various Shapes and Sizes”.

 

101) J. Tang, Y-C. Yeh and P-T. Tai, Chem. Phys. Lett. 463, 134 (2008),

“Fluctuating Reaction Rate and Non-Exponential Blinking Statistics in Single-Enzyme Kinetics”.

 

100) D. H. Lee and J. Tang, J. Phys. Chem. C 112, 15665 (2008),

“Unusually large exponent for the inverse power-law blinking of single chromophores”

 

99) J. Tang, J. Chem. Phys. 129, 084709 (2008),

“The Effects of Anomalous Diffusion on Power-law Blinking Statistics of CdSe Nanorods”.

 

98) J. Tang, Chem. Phys. Lett. 458, 363 (2008),

“Exploring Fluorescence Intermittency in Enzyme Reactions of Single Lipase Molecules”.

 

97) J. Tang, J. Chem. Phys. 128, 164702 (2008),

“Coherent Phonon Excitation and Linear Thermal Expansion in

Structural Dynamics and Ultrafast Electron Diffraction of Laser-Heated Metals”.

 

(selected for the May 2008 issue of Virtual Journal of Ultrafast Science)

 

 

96) J. Tang, App. Phys. Lett. 92, 011901 (2008),

“Nano-Scale Heat Transfer in a Thin Aluminum Film and Femtosecond Time-Resolved Electron Diffraction”.

(selected for the Jan. 14, 2008 issue of Virtual Journal of Nanoscale Science & Technology)

 

(selected for the Feb. 7, 2008 issue of Virtual Journal of Ultrafast Science)

 

 

95) J. Tang, J. Phys. Chem. A  111, 9336 (2007) (invited paper),

Size Effects and the Breakdown of the Power-Law Blinking Statistics of CdSe Nanorods”.

 

94) J. Tang, J. Chem. Phys. 127, 111105 (2007),

“Fluorescence intermittency of silicon nanocrystals and other quantum dots: a unified two-dimensional diffusion-controlled reaction model”.

 

93) V. A. Lobastov, J. Weissenrieder, J. Tang and A. H. Zewail, Nano Lett.  7, 2552 (2007),

“Ultrafast Electron Microscopy of Nanostructured Materials: 4D Imaging and Diffraction during Phase Transitions.“

 

92) J. Tang, D. S. Yang and A. H. Zewail, J. Phys. Chem. C  111, 8957 (2007).

“Time-resolved Ultrafast Electron Crystallography. III  Theoretical Modeling of Structural Dynamics”.

 

91) C. W. Chen and J. Tang, Chem. Phys. 331. 245 (2007),

 “Half- and Full-integer Power-law Behavior in Distance Fluctuations: Langevin Dynamics in One- and Two-dimensional Systems”.

 

90) J. Tang and S. H. Lin, Phys. Rev. E  73, 061108 (2006).

“Distance versus Energy Fluctuations and Electron Transfer in Single Protein Molecules”.

(selected for the July 1, 2006 issue of Virtual Journal of Biological Physics Research)

 

89) J. Tang  and R. A. Marcus, J. Chem. Phys.       125, 044703 (2006),                            “Determination of Energetics and Kinetics from Single-particle Intermittency and Ensemble-averaged Fluorescence Intensity Decay of Quantum Dots”.

 

88) J. Tang and R. A. Marcus, Phys. Rev. E  73, 022102 (2006),

“Chain Dynamics and Power-law Distance Fluctuations of Single-molecule Systems”.

(selected for the Mar. 1, 2006 issue of Virtual Journal of Biological Physics Research)

 

87) J. Tang and R. A. Marcus, J. Chinese Chemical Soc. 53. pp. 1-13 (2006),

 “Photoinduced Spectral Diffusion and Electron Transfer in Fluorescence Intermittency of Quantum Dots”,

 

86) J. Tang, J. Lightwave Tech. 24, 2070-2075 (2006),

“A Comparison Study of Shannon Channel Capacity of Various Nonlinear Optical Fibers”,

85) J. Tang and R. A. Marcus, J. Chem. Phys., 123, 204511 (2005),                           “Single Particle vs. Ensemble Average: From Power-law Intermittency of a Single Particle to Stretched Exponential Fluorescence Decay of an Ensemble”.

(selected for the Dec. 12, 2005 issue of Virtual Journal of Nanoscale Science & Technology)

 

84) J. Tang and R. A. Marcus, Phys. Rev. Lett. 95, 107401 (2005),               “Diffusion-controlled Electron Transfer Processes and Power-law Statistics of Fluorescence Intermittency of  Nanoparticles”.

(selected for the Sept. 12, 2005 issue of Virtual Journal of Nanoscale Science & Technology)

 

83) J. Tang and R. A. Marcus, J. Chem. Phys. 123, 054704 (2005),                            “Mechanisms for Fluorescence Blinking in Semiconductor Nanocrystal Quantum Dots”.

(selected for the Aug. 22, 2005 issue of Virtual Journal of Nanoscale Science & Technology)

82) J. Tang, M. T. Lin and S. H. Lin, J. Chem. Phys. 119, 7188-7196 (2003),          “Effects of Duschinsky Mode-mixing Mechanism on Electron Transfer and its Temperature Dependence”.

81) J. Tang, J. Lightwave Technology, vol. 20, 1095-1101 (2002),                                           “The Channel Capacity of a Multispan DWDM System Employing Dispersive Nonlinear Optical Fibers and An Ideal Coherent Optical Receiver”.

80) J. Tang, J. Lightwave Technology, vol. 19, 1110-1115 (2001),                                           “The multispan effects of Kerr Nonlinearity and Amplifier Noises on Shannon Channel Capacity of Dispersion-free Nonlinear Optical Fiber Transmission – II. An Exact Closed-form Treatment”.

79) J. Tang, J. Lightwave Technology, vol. 19, 1104-1109 (2001),                                           “The Shannon Channel Capacity of Dispersion-free Nonlinear Optical Fiber Transmission – I. An Exact Closed-form Formula for Arbitrary Operating Power”.

78) G. Link, T. Berthold, M. Bechtold, J.-U. Weidner, E. Ohmes, J. Tang, O. Poluektov, L. Utschig, S. Schlesselman, M. C. Thurnauer and G. Kothe, J. Am. Chem. Soc., 123, 4211-4222 (2001),                                                                                                                                   “Structure of the P+700A-1 Radical Pair Intermediate in Photosystem I by High Time Resolution Multifrequency Electron Paramagnetic Resonance - Analysis of Quantum Beat Oscillations”.

 

77) O. G. Poluektov, L. M. Utschig, J. Tang, A. A. Dubinski, S. Schlesselman, and M. C. Thurnauer, Appl. Magn. Reson., 21, 311-323 (2001),                                                            “High-Frequency Approach to the Electron Spin-Polarization Effects Observed in the Photosynthetic Reaction Centers”.

76) T. Berthold, M. Bechtold, U. Heinen, G. Link, O. Poluektov, L. Utschig, J. Tang, M. C. Thurnauer and G. Kothe, J. Phys. Chem. B 103, 10733-10736 (1999),                                        “Magnetic Field Induced Orientation of Photosynthetic Reaction Centers as Revealed by Time-Resolved W-Band EPR Of Spin-Correlated Radical Pairs”.

t75) J. Tang, L. M. Utschig, O. Poluektov and M. C. Thurnauer, J. Phys. Chem. B 103, 5145-5150 (1999),                                                                                                            “Transient W-Band EPR Study of Sequential Electron Transfer in Photosynthetic Bacterial Reaction Centers”.

74) J. Tang, Chem. Phys. Lett. 290, 49  (1998),

“Structural Implications of Transient X-,, K- and W-band EPR Spectra of Deuterated and Protonated Reaction Centers of Rhodobacter sphaeroides R-26".

 

73) H. Hara, J. Tang, A. Kawamori, S. Itoh, and M. Iwaki, Appl. Magn. Reson. 14, 367 (1998)

“Anomalous Pulse-angle and Phase Dependence of Hahn’s Electron Spin Echo and Multiple-Quantum Echoes of Spin Correlated Radical Pair P700+A- in Photosystem I”.

 

72) J. Tang and S. H. Lin, J. Chem. Phys. 107, 3485 (1997),

“Quantum Tunneling versus Thermally Activated Electron Transfer in Ohmic and non-Ohmic Heat Baths”.

 

71) L. M. Utschig, J. Tang, S. R. Greenfield, P. D. Laible, and M. C. Thurnauer, Biochem. 36, 8548 (1997),

“Influence of Iron-removal Procedures on Sequential Electron Transfer in Photosynthetic Bacterial Reaction Centers Studied by Transient EPR Spectroscopy”.

 

70) J. Tang, M. C. Thurnauer, A. Kubo, H. Hara and A. Kawamori, J. Chem. Phys. 106, 7471 (1997),

“Anomalous Pulse-angle and Phase Dependence of Hahn’s Electron Spin Echo and Multiple-quantum Echoes in a Photoinduced Spin-correlated Radical Pair”.

 

69) J. Tang, J. R. Norris and H. Shirakawa,  J. Phys. Chem. Solid 58, 475(1997),

"EPR Lineshape Analysis of One-Dimensional Soliton Diffusion  in Trans-Polyacetylene”.

 

68) J. Tang, Phys. Lett. A 229, 33 (1996),

“Coherent States and Squeezed States of Massless and Massive Relativistic Harmonic Oscillators”.

 

67) J. Tang and S. H. Lin, Chem. Phys. Lett.  254, 6 (1996),

"Nonexponential Decays and Oscillations in Electron Transfer Reactions".

 

66) J. Tang, J. Chem. Phys. 104, 9408 (1996),

“Electron Transfer Reactions in a Non-Debye Medium with Frequency-Dependent Friction”.

 

65) J. Tang, S. Bondeson, and M. C. Thurnauer, Chem. Phys. Lett. 253, 293 (1996),

“Effects of Sequential Electron Transfer on Electron Spin Polarization Transient EPR Spectra at High Fields”.

 

64) J. Tang, Phys. Lett. A 210, 33 (1996),

"The Generalized Heisenberg Commutation Relations and Uncertainty Inequality for Relativistic Quantum Harmonic Oscillators".

 

63) J. Tang, S. N. Dikshit and J. R. Norris, J. Chem. Phys. 103, 2873 (1995),

"ESR Line Shapes for One- and Two-Dimensional Random Walk Processes".

 

62) J. Tang, M. C. Thurnauer, and J. R. Norris, Appl. Mag. Reson. 9, 23 (1995),

"Abnormal Electron Spin Echo and Multiple-Quantum Coherence in a Spin-Correlated Radical Pair System".

 

61) A. L. Morris, S. W. Snyder, Y. Zhang, J. Tang, M. C. Thurnauer, P. L. Dutton, D. E. Robertson, M. R. Gunner, J. Phys. Chem.  99, 3854 (1995),

"An Electron Spin Polarization Model Applied to Sequential Electron Transfer in Iron-Containing Photosynthetic Bacterial Reaction Centers with Different Quinones as QA".

 

60) J. Tang and J. R. Norris, Chem. Phys. Lett. 233, 192 (1995),

"Multiple-Quantum EPR Coherence in a Spin-Correlated Radical Pair System".

 

59) J. R. Norris, S. Dirkshit, J. Tang and D. M. Tiede, Abs. Am. Chem. Soc. 210, 141-PHYS (1995),

“Electron Transfer in Integral Membrane-Proteins”.

 

58) J. Tang, Chem. Phys. 189, 427 (1994),

"Resonance Effects on Superexchange and Sequential Electron-Transfer  Reactions due to Energy-Level Crossing".

 

57) J. Tang and J. R. Norris,  J. Chem. Phys. 101, 5615 (1994),

"On Superexchange Electron-Transfer Reactions Involving Three Paraboloidal Potential Surfaces  in a Two-Dimensional Reaction Coordinate".

 

56) J. Tang, Chem. Phys. 188,  143 (1994),

"Electron-Transfer Reactions Involving Non-linear Spin-Boson Interactions".

 

55) J. Tang, Chem. Phys. Lett. 227, 170 (1994),

 

湖北省武汉市武昌区八一路299号 邮编:430072 版权所有 © 武汉大学工业科学研究院  您是本站第192346位访客